
DYNAMICS OF A FLUID IN A ROUGHNESS LAYER
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A study is made of the dynamics of a viscous Newtonian fluid in a roughness layer which takes into account
the oscillation of the geometric structure of the layer space. The solution of modified Navier–Stokes equations
is represented in the form of a three-scale expansion in powers of the geometric parameters of the roughness
and describes the motion of the fluid throughout the layer (integral scale) and in the cells formed by rough-
ness elements (local scales). The spatial averaging of the problem has been carried out; the system of equa-
tions which prescribes the integral dynamics of the fluid in the layer as a continuous medium with allowance
for the contributions from the effects of local dynamics in the roughness cells and is a basis for construction
of the models of turbulence in a strongly locally inhomogeneous medium has been given.

A great many works (for example, [1, 2]) are devoted to investigations of a turbulent boundary layer occur-
ring in the case of plane-parallel flow of a fluid above a totally rough wall. The results obtained in them constitute
the so-called laws of a logarithmic boundary layer ("wall laws")
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and are classical. The logarithmic laws (1) confirmed by numerous experiments have been obtained under the assump-
tion of constancy of the turbulent momentum in the boundary layer and impermeability of the roughness level
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τ(z) = const, k 
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 z=z0

 = 0

 to the turbulent motion. These assumptions do not distort very strongly the physical pic-

ture of the turbulent interaction of the fluid flow with a rough wall at heights that are at a large distance from the
wall and in flows whose characteristic spatial scales are considerably larger than the level of roughness of the under-
lying surface. However the internal turbulent flow in the roughness layer and its influence on the characteristics of the
external flow are excluded from consideration. The assumptions indicated are confirmed by experiments in tubes and
channels and in the boundary layers above other rough surfaces when the heights at which the measurement in the
boundary layer are carried out are an order of magnitude or more higher than the characteristic scales of inhomo-
geneity of the rough wall.

At the same time, a great many problems exist in which one must take into account the interaction of the
fluid flow with the internal flow in the roughness layer and calculate their characteristics. These are, for example, the
problems of the ability of vegetation and agrolandscapes to be blown by the wind and energy and mass transfer in
these structures [3–6], the formation of waves and flows under the action of the wind above the free water surface [7],
the efficiency of gas curtains in the case of cooling of porous surfaces [8], etc. In such problems, the upper boundary
h of the roughness layer can no longer be considered to be impermeable to a turbulence flow and the turbulent-mo-
mentum flow cannot be considered to be constant in the external boundary layer. Accordingly, relations (1) also fail
in the boundary layer above the roughness.

Furthermore, the Navier–Stokes equations themselves as the model of fluid dynamics in a roughness layer and
the starting basis for construction of turbulence models hold only in inhomogeneity-free regions of space. A popular
way out is in "virtual smearing" of the roughness in the layer and subsequent application of the methods of boundary-
layer theory, statistical hydromechanics, or other techniques of investigation of turbulence without taking into account
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the local interactions in roughness cavities. Generally speaking, such an approach to solution of the problem of dynam-
ics of a fluid in a high roughness and in the boundary layer above is incorrect.

Below we consider the dynamics of a viscous Newtonian fluid flow in a layer of a horizontally homogeneous
roughness which is formalized based on the spatial averaging of Navier–Stokes equations. The results obtained provide
a basis for construction of turbulence models in such a locally strongly inhomogeneous medium as a roughness. The
subsequent application of the methods of statistical hydrodynamics [2, 5] to the averaged Navier–Stokes equations
leads to a semiempirical model of turbulence in a roughness with an "instantaneous square law of resistance" and free
boundaries and conditions on them, which describes turbulent flow in the roughness more completely. This distin-
guishes the model from the existing semiempirical model of turbulence in a roughness and in the boundary layer
above it [3, 4] constructed on the basis of "virtual smearing" of roughness inhomogeneities in the layer space with
fixed boundaries and boundary conditions, statistical averaging of Navier–Stokes equations, and account for the "aver-
aged square law of resistance" of the roughness to the turbulent flow.

Roughness-Layer Model and the Hydrodynamic Problem of Fluid Flow. To construct a mathematical
model of the interaction of a viscous-fluid flow with a roughness layer one must prescribe the region in which
the hydrodynamic problem is determined and consider the external flow above the roughness in the layer
Mhz = 


z ≥ h, x, y 2 R2



 ⊂  R3. A set free from roughness inhomogeneities for z < h forms the region of internal flow. It

is difficult to construct a general geometric model of this set because of the diversity of the shapes of inhomogeneities
and of the laws of their distribution in space. Such distributions usually prescribe a random spatial structure to a
roughness. To preserve the meaning of the average value of any quantity in the roughness layer in averaging the hy-
drodynamic problem one must construct geometric models of the distribution of inhomogeneities in space which pos-
sess ergodicity [9]. We restrict ourselves to a simple horizontally periodic roughness model which is ergodic in
construction. Many roughnesses have a randomly periodic structure to which one extends, almost directly, all the re-
sults obtained for the hydrodynamic problem of turbulent flow in a horizontally periodic roughness. We also note that
in the case of a roughness of arbitrary structure the latter can easily be approached by a finite set of randomly peri-
odic structures.

We denote by Ξεηδ the open horizontally periodic set which is free from inhomogeneities forming the rough-
ness Γεηδ = M0h \ Ξεηδ in the layer M0h = 


x = col (xi, i = 1, 2, 3): 0 < x3 < h, x1,2 2 R2



 ⊂  R3. We form a basic element of

the periodic roughness Γεηδ, i.e., a single "tree" D. For simplicity we will assume that the tree D has n stages with
the same number of "branches" of radius r "with leaves" in each stage and of interstage step d (r, d << h). It is clear
that n = [d−1h]; without loss of generality, we set h = nd. We identify the horizontal jth stage of the tree D with
ω = (r × r × d), i.e., the cell at whose nodes we place the bodies πij, i = 1, ..., 4, bounded by the surfaces ∂πij. The fill-
ing of the layer M0h with parts of the tree D which form the jth stage, j = 1, ..., n, will be expressed by the areas of
the normal cross sections of these bodies: sij

ε  = sε(xij) < 1 in a unit area of the side in the planes (x20x3) and (x10x3)
along the roughness layer and sij

η = sη(xij) < 1 in the plane (x10x2) across the roughness layer; xij are the vectors of the
coordinates of the centers of the bodies πij. We set sε(0) = sη(0) = sε(h) = sη(h) = 0. The dynamic resistance of each
stage to the flow will be expressed by the coefficients cfi, i = 1, 2, 3, in a unit of height h of the roughness layer. The
tree D will be placed in the layer M0h horizontally l-periodically (r << 1). Thus, the structure of the roughness Γεηδ in
the layer M0h has the form of a horizontally periodic set of cells Ω = (l × l × h), inside each of which a vertical set of
n cells ω = (r × r × d) is located. We will assume that the roughness degenerates in contraction of an ω cell to the
point (r → 0, sij → 0).

Let us introduce the dimensionless parameters ε = rh−1, δ = lh−1, and η = dh−1 = n−1 characterizing the relative
dimensions of ω and Ω cells in the volume (h × h × h) of the layer M0h. To describe fluid flow in the free space of
the layer, apart from the integral coordinates x, we introduce the local coordinates y = col (y1, y2), yi = δ−1xi, i = 1, 2,
z = col (z1, z2, z3), zi = ε−1yi, i = 1, 2, and z3 = η−1x3 in the Ω and ω cells respectively. In these coordinates, the equa-
tions of the oscillating dynamics of fluid flow in the region Ξεηδ have the form

∂tu
εηδ

 + su
εηδ

, ∇ εηδ
t u

εηδ
 = ν∆εηδ

u
εηδ

 − ρ−1∇ εηδ
p
εηδ

 , (2)

(div)εηδ u
εηδ

 = 0 , (3)
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u
εηδ

 = u (t, δ−1
Px, δ−1ε−1

Px, η−1
Qx, x) ,   x 2 Ξεηδ

 × [t0, ∞) , (4)

where P = 

100
010





∗
 and Q = (001)∗  are the projectors of R3 → R2 and R1, and become classical Navier–Stokes equations

in the external boundary layer Mhx3
 = 


x: h < x3, x1,2 2 R2



 adjacent to the roughness.

For system (2)–(4) we prescribe the following boundary and initial conditions:
(a) at the boundary of the inhomogeneities for x 2 ∂Ξεηδ and t 2 [t0, ∞) we have the tensor relationship be-

tween the stresses in the fluid σεηδ and the specific forces of the resistance τw
εηδ of the inhomogeneities to the fluid

motion expressed by the velocity of the flow at the inlet to the ω cell and the specific coefficient of resistance cfi

1
mes ω

   ∫ 
∂πij

  Σεηδ
 dzn∂π = τw

εηδ
 = ρCfSij

π
 u

εηδ
 ⊗  u

εηδ
  , (5)

Σεηδ
 = (σij)i,j=1,

3
 = − (δij p

εηδ
 − 2µδikδjlekl (u

εηδ))i,j,k,l=1
3

 , (6)

e
εηδ

 = ekl (u
εηδ) = 

1
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∂uk
εηδ

∂xl
 + 

∂ul
εηδ

∂xk







k,l=1

3

 ,

Cf = diag (cfl ,  l = 1, 2, 3) ,   Sij
π
 = diag (sij

ε
, sij

ε
, sij

η) ,   u
εηδ

 ⊗  u
εηδ

  = col ((ui
εηδ)2)i=1

3
 ; (7)

(b) in the hyperplane M0 = 

x: x3 = 0, x1,2 2 R2



 we have the condition of sticking of the flow to an imperme-

able wall

u
εηδ

 = 0 ,   p
εηδ

 = 0 ,   x 2 M0 ,   t 2 [t0, ∞) ; (8)

(c) in the hyperplane Mh = 

x: x3 = h, x1,2 2 R2



 we have smooth joining of the characteristics of the internal

and external flows

u
εηδ

 (Px, h − 0, t) = u (Px, h + 0, t) ,   ∂u
εηδ

 (Px, h − 0, t) = ∂u (Px, h + 0, t) ,

p
εηδ

 (Px, h − 0, t) = p (Px, h + 0, t) ,   t 2 [t0, ∞) ; (9)

(d) the initial conditions are

u0
εηδ

 = u~0
 εηδ

 = u~ (t0, δ−1
Px, δ−1ε−1

Px, η−1
Qx, x) ,   x 2 Ξεηδ

 ,   t0 2 [t0, ∞) , (10)

p0
εηδ

 = p~0
 εηδ

 = p~ (t0, δ−1
Px, δ−1ε−1

Px, η−1
Qx, x) ,   x 2 Ξεηδ

 ,   t0 2 [t0, ∞) . (11)

The solution of problem (2)–(11) necessitates its spatial averaging [10, 11].
Averaged Hydrodynamic Problem. The averaged equations of the integral dynamics of a fluid in a rough-

ness layer have the form
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∂tu
000

 + su
000

, (I − Cs) ∇ xt u
000

 = ν s∇ x, (I − Cs) ∇ xt u
000

 − ρ−1
 (I − Cs) ∇ x p

000
 + CfS [u

000
 ⊗  u

000
] , (12)

s(I − Cs) ∇ x, u
000

t = 0 , (13)

u
000

 (x1, x2, h − 0, t) = u (x1, x2, h + 0, t) ,   ∂xu
000

 (x1, x2, h − 0, t) = ∂xu (x1, x2, h + 0, t) ,   

p
000

 (x1, x2, h − 0, t) = p (x1, x2, h + 0, t) , (14)

u
000

 (x1, x2, 0, t) = 0 ,   p
000

 (x1, x2, 0, t) = 0 , (15)

x1, x2 2 (− ∞, ∞) ,   x3 2 [0, h] ,   t 2 [0, ∞) ,

where Cs = diag 



sδ

2
(1 + sε), s

δ

2
(1 + sε), sη




, S = diag  s

δ, sδ, sη , and u(x1, x2, h + 0, t), ∂xu(x1, x2, h + 0, t), p(x1, x2, h + 0, t)

is the solution of the hydrodynamic problem above the roughness at the upper level of inhomogeneities.
Recovery of the stressed state of the averaged flow from the equations of its motion [(12 and (13)] leads to

the rheological relation

Σ000
 = − p

000
 


I − Cs + 
1

p
000

 limϑx→0  ∫ 
ϑx

 p
000∇ xCsdx



 + 2µ (E
.

0
 000

 − Cs∇ xE1
000) −

− ρ limϑx→0  
1

∂ϑx
  ∫ 
ϑx

 CfS [E1
000

 ⊗  E1
000

] dx ,

E1
000 = diag (ui

000)i=1
3  which characterizes the averaged flow as a non-Newtonian anisotropic pseudocompressible fluid

with a density and internal resistance dependent on the rate of compressive strain, the velocity of motion of the flow,
and the characteristics of the geometric structure of the layer M0h. In the limiting situation (Cs → 0), as is easily seen,
this rheological relation becomes a generalized Newton law for an isotropic liquid. A detailed investigation of the
rheodynamics of the model medium constructed above is beyond the scope of the present paper. We only note that
rheological relations of such form can also be obtained in averaging the motion of the fluid in porous media and sus-
pensions [12, 13].

Let us briefly explain the procedure for constructing system (12)–(15). We transform system (2)–(11) to the
problem with zero initial and boundary conditions

∂tu
εηδ

 − ν ∆x
εηδ

u
εηδ

 = F
εηδ

 , (2a)

(div)εηδu
εηδ

 = 0 , (3a)


 σij

εηδ
 + δij p

εηδ
 − 2µδikδjlekl

εηδ
 u

εηδ


 i,j,k,l=1

3

 = 0 ,   x 2 ∂Ξεηδ
 ,   t 2 [t0, ∞) , (4a)

u
εηδ

 (t, 0) = 0 ,   u0
εηδ

 (x) = 0 , (5a)
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F
εηδ

 = − su
εηδ

, ∇ x
εηδ

t u
εηδ

 − ρ−1
 ∇ x

εηδ
p
εηδ

 + ∂n sδS (Mh), u (h + 0)t nh +

+ sδS (∂Ξεηδ), ρCfS
εηδ

 [u
εηδ

 ⊗  u
εηδ

]t nS + δ (t − t0) u
~

0
εηδ

 ,

x 2 Ξεηδ
 ,   t 2 [t0, ∞) ,   t0 2 [0, ∞) . (6a)

Transformation of system (2)–(11) into the equivalent system (2a)–(6a) is carried out using the nonlinear in-
tegro-differential equation with a kernel by the Green operator function and the standardized vector function Fεηδ of
the Stokes linear problem with homogeneous initial-boundary conditions [14].

To average problem (2a)–(6a) we apply the method of asymptotic expansions [10, 11]. Assuming that the in-
tegral x and local y and z variables are independent, we represent the differential operator of the gradient in the form

∇ εηδ
 = ∇ x + δ−1

P
∗ ∇ y + δ−1ε−1

P
∗ ∇ z + η−1

Q
∗ ∇ z . (16)

The expressions for the remaining differential operators appearing in system (2)–(11) can easily be obtained from (16)
and the representations ∆ (∗ ) = s∇ , ∇ t(∗)  and div (∗ ) = s∇ , (∗) t.

The solution (4) of system (2)–(11) is sought in the form of a series in powers of the parameters δ, η, and
ε:

u
εηδ

 (x, y, z, t) = u
000

 (x, t) + δ (u001
 (Qx, y, t) + ε (u101

 (y, Pz, t) + ...) + ...) +

+ η (u010
 (y, Qz, t) + ...) + ... . (17)

Substituting (16) and (17) and the corresponding expressions for the remaining operators into system (2a)–(6a) and
equating subsequently the coefficients of the parameters δ, η, and ε of the same power on both sides of the expan-
sions, we obtain the system of interrelated equations of the fluid dynamics and the initial-boundary conditions in the
layer [0, h] (integral scale) and in the ω and Ω cells (local scales). In subsequent constructions, we restrict ourselves
to the employment of the terms of expansion which correspond just to the zero and first powers of each parameter.
Thus, the system corresponding to the zero powers of the parameters δ, η, and ε is represented by the equations

∂tu
000

 + su
000

, ∇ xt u
000

 + sPu
000

, P
∗ ∇ yt u

001
 + sPu

000
, P

∗ ∇ yt u
101

 +

+ sQu
000

, Q
∗ ∇ Qzt u

010
 = ν (∆xu

000
 + (s∇ x, P

∗ ∆yt + sP
∗ ∆y, ∇ xt) u

001
 +

+ (s∇ x, P
∗ ∇ Pzt + sP

∗ ∇ Pz, ∇ xt) u
101

 + (s∇ x, Q
∗ ∇ Qzt + sQ

∗ ∇ Qz, ∇ xt) u
010) −

− ρ−1
 (∇ xp

000
 + P

∗ ∇ yp
001

 + P
∗ ∇ Pzp

101
 + Q

∗ ∇ Qzp
010) + CfS [u

000
 ⊗  u

000
] , (18)

s∇ x, u
000

t + sP
∗ ∇ y, Pu

001
t + sP

∗ ∇ Pz, Pu
101

t + sQ
∗ ∇ Qz, Qu

010
t = 0 . (19)

Equations corresponding to the first powers of the parameters δ, η, and ε and the corresponding expressions
for the boundary and initial conditions have analogous representations.

The resultant system is open since it contains a larger number of the sought components of expansion of the
solution of the hydrodynamic problem than the number of equations and of the conditions corresponding to them.
Therefore, the problem of closing arises for this system; it implies that smaller-scale components of the solution of the
hydrodynamic problem are represented by larger-scale components and is analogous to the problem of closing in the
statistical mechanics of turbulence [2].
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Averaging and the Influence of the Geometry of the Roughness Layer. Let us apply operations of averag-
ing over the sides of the ω and Ω cells to Eqs. (18) and (19) and the homogeneous boundary and initial conditions
corresponding to these equations:

(∗) ∧
 = 

1
mes Pω

  ∫ 
Pω

 (∗)  dz ,   (∗) ∨  = 
1

mes PΩ
  ∫ 
PΩ

 (∗)  dy ,   (∗) 3 = 
1

mes Qω
  ∫ 
Qω

 (∗)  dQz ,

mes Pω = r
2
 ,   mes Qω = d ,   mes PΩ = l

2
 .

It is easily seen that (u000)∧  = (u000)∨  = (u000)∩ = u000 and, passing from integration over the area of the cell
to integration along its contour, we obtain





∂ui
101

∂zj





∧ ,∨ ,3

 = δij 




l
−2

r
−2

d
−1

     ∫ 
Qz2PΩ2Pω

      snj
+
, ui

101
 (+Sω

j )t − snj
−
, ui

101
 (−Sω

j )t  dzdy =

= l
−2

r
−1

  ∫ 
PΩ

 Pr ui
101

 (+Sω
i )

∧
 − Pr ui

101
 (−Sω

i )

∧

  dy F − l

−2
  ∫ 
PΩ

 αii
ε
 
∂ui

001

∂yi
 dy =

= − αii
ε
 l
−1

 Pr ui
001

 (+SΩ
i )

∨
 − Pr ui

001
 (−SΩ

i )

∨





 F 













− αii
ε
 αii

δ
 
∂ui

000

∂xi
 ,

0 ,

     

i = j ,

i ≠ j ,

and hence the horizontal averaging of local motions of the fluid in the ω cells leads to the occurrence of additional
horizontal gradients of the averaged horizontal velocities and to additions to the convective acceleration of a fluid par-
ticle in the averaged flow. By virtue of the l-periodicity of the roughness structure on the free space of the Ω cell we
have the restoration of the loss of the horizontal components of the velocity vector which occurs in the case of flow
through the ω cell.

The averaging of local motions in the ω cell across the layer also leads to the appearance of the additional
component of the convective acceleration of the particle in the averaged flow





∂ui
010

∂z3





∧ ,∨ ,3

 = d
−1

 sn3
+
, (ui

010
 (+Sω

i ))3t − sn3
−
, (ui

010
 (−Sω

i ))3t  F 













0 ,

− αi3
η

 
∂u

000

∂x3
 ,

     

i ≠ 3 ,

i = 3 ,

and to a defect of the vertical component of the velocity vector in the case of flow through the ω cell. Here

snj
+(−), ui

101(001)(+(−)Sω(Ω)
j )t is the projection of the ith component of the vector of the flow velocity to the sides

+(−)Sω(Ω)
j  of the ω(Ω) cell which are opposite to j and nj

+(−) are the normals to these sides.

We have the same situation (up to a sign) in averaging for both the horizontal pressure gradient in the ω cell
and the vertical pressure gradient in the layer [0, h]:


P∇ z p

101


∧ ,∨ ,3
 = l

−2
r
−2

d
−1

     ∫ 
Qz2Pω2PΩ

      nj
+
 (p101)+ − nj

−
 (p101)−  dzdy = βj

δ
 
∂p

000

∂xj
 ,

930




Q∇ z p

010


∧ ,∨ ,3
 F β3

η
 
∂p

000

∂x3
 .

The averaging of the medium-scale components of the velocity P∇ yu
001 and the pressure gradient P∇ yp

001

over the Ω cells also leads to a change in the convective acceleration, the potential component of the velocity, and the
pressure in the averaged flow, since





∂ui
001

∂yj





∨ ,3

 = 













0 ,

αii
δ
 
∂ui

000

∂xi
 ,

     

i ≠ j ,

i = j ;

     




∂p
001

∂y3





∨ ,3

 = 













0 ,

β3
δ
 
∂p

000

∂x3
 ,

     

i ≠ 3 ,

i = 3 .

The coefficients αii
ε , αii

δ, βi
ε, βi

δ, i = 1, 2, α33
η , and β3

η represent functions which depend on the geometric char-
acteristics of the inhomogeneities, the parameters of their location in the layer, and the difference of the flow velocities
and the pressure in the corresponding cells. In accordance with the conditions at the boundaries of the roughness layer,
it is natural to take

αii
ε(δ)

 (0) = αii
ε(δ)

 (h) = 0 ,   βi
ε(δ)

 (0) = βi
ε(δ)

 (h) = 0 ,   α33
η

 (0) = α33
η

 (h) = 0 ,   β33
η

 (0) = β33
η

 (h) = 0 .

Both solutions of the problems in local cells and experimental investigations of flow in the roughness are required to
establish the form of three functions. From dimensional considerations we take

αii
ε
 = βi

ε
 = s

ε
 ,   α33

η
 = β3

η
 = s

η
 ,   αii

δ
 = βi

δ
 = 

s
δ

2
 ,

where

1

mes Qω √mes Pω
          ∫ 
mesQω√ mesPω

            ∑ 

i,j=1

2

   s
η
 (x1, x2i, x3j, z, y) dQz = s

η
 (y, Qx) ,

1
mes Pω

  ∫ 
Pω

   ∑ 

i,j=1

2

  s
ε
 (x1i, x2j, x3, z, y) dPz = s

ε
 (y, Qx) ,   1

mes PΩ
  ∫ 
PΩ

 s
ε
 (x, y) dy = s

δ
 (x) .

Thus, by virtue of the inhomogeneity of the geometric space structure of the layer [0, h] as a result of the
averagings we have


su

000
, ∇ xt u

000
 + sPu

000
, P

∗ ∇ yt u
001

 + sPu
000

, P
∗ ∇ zt Pu

101
 + sQu

000
, Q

∗ ∇ zt u
010



∧ ,∨ ,3
 =

= su
000

, (I − Cs) ∇ xt u
000

 ,


 ∆xu

000
 + s∇ x, P

∗ ∇ yt + sP
∗ ∇ y, ∇ xt


  u

001
 + s∇ x, P

∗ ∇ Pzt + sP
∗ ∇ Pz, ∇ xt


  u

101
 +

+  s∇ x, Q
∗ ∇ Qzt + sQ

∗ ∇ Qz, ∇ xt

  u

010


∧ ,∨ ,3

 = s∇ x, (I − Cs) ∇ xt u
000

 ,


 ∇ x p

000
 + P

∗ ∇ y p
001

  + P
∗ ∇ z p

101
  + Q

∗ ∇ z p
010



∧ ,∨ ,3

 = (I − Cs) ∇ x p
000

 ,
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sδS (∂Ξεηδ), τw

εηδ
t nS




∧ ,∨ ,3

 = ρCfS u
000

 ⊗  u
000

  ,


s∇ x, u

000
t + sP

∗ ∇ y, Pu
001

t + sP
∗ ∇ Pz, Pu

101
t + sQ

∗ ∇ Qz, Qu
010

t

∧ ,∨ ,3
 = s(I − Cs) ∇ x, u

000
t

and without dwelling on the procedure of averaging of the remaining linear components in (18)–(19) and of the re-
maining initial-boundary conditions, we arrive at system (12)–(15).

The averaged equations of the local dynamics of the flow in the Ω and ω cells are constructed analogously.
These equations, together with the averaged Navier–Stokes equations for the entire roughness layer, form a complete
system of Navier–Stokes equations which formalizes the hydrodynamics of a viscous fluid in the layer of a periodic
roughness in traditional terms. Applying the methods of the statistical hydromechanics of turbulence to system (12)–
(15) [2] and taking into account that, because of the periodicity of the geometric structure of the roughness, all the
horizontal additions to the convective acceleration, the potential velocity component, and the pressure in the averaged
flow vanish for stationary fluid motions, including periodic ones, one can construct the models of turbulence in the
layer of a periodic roughness. Thus, the model of turbulence in homogeneous vegetation with free conditions at the
boundaries and a free position of the lower boundary of the turbulent zone (determinable by solution of the problem)
that realizes the instantaneous square law of resistance of the vegetation to the motion of an air flow has been con-
structed and investigated in [5, 6].

NOTATION

u(z)
____

, average horizontal component of the vector of the flow velocity; b(z), intensity of turbulence in the

boundary layer; τ, turbulent (Reynolds) tangential stress in the flow; u′ and w′, pulsation horizontal and vertical com-

ponents of the vector of the flow velocity; u′w′
____

, correlation of the horizontal and vertical pulsations of the velocity

vector; u∗ , dynamic velocity in the boundary layer (characteristic velocity scale); t, time; t0, initial instant of time; µ,

ν, and ρ, coefficients of dynamic and kinematic viscosity of the fluid and its density; κ = 0.4, Ka′ rma′n constant; z0,

level of roughness of the underlying surface (mean statistical height of the inhomogeneities forming the roughness of
the wall in flow); z, vertical coordinate; k, coefficient of turbulent viscosity; h, mean statistical height of the roughness

inhomogeneities; uεηδ and pεηδ, velocity of the fluid flow and deviation of the total pressure from an equilibrium pst

in roughness cavities; Rm, m = 1, 2, 3, m-dimensional Euclidean space; sη, average surface of inhomogeneities in a unit

square of the vertical side of the ω cell in the direction across the layer; sε, average surface of inhomogeneities of a

unit square of the horizontal side of the ω cell in the direction along the layer; sδ, average surface of inhomogeneities

in a unit square of the horizontal side of the Ω cell in the direction along the layer; Pr (∗ ), projection of the vector

(∗ ) on the sides of the cell; Cs and S, tensors of the characteristics of the averaged relative blocking of the layer

M0h by the roughness; (I − Cs), tensor of the characteristics of the relative "transparency" of the layer M0h; Σεηδ and

Σ000, stress tensors in the nonaveraged and averaged flows; E0
000, standard tensor of the strain rate of the averaged

flow as a Newtonian isotropic medium; τw
εηδ, specific force of resistance of the inhomogeneities in roughness cells to

the flow; Cf, tensor of the coefficients of dynamic resistance of the roughness; mes A, measure of the set A; I, opera-

tor unit; s∗ , &t and [∗  ⊗  &] = col ((∗ )i(&)i)i=1
3 , inner and outer Kronecker products of the vectors (∗)  and (&); ϑ(x)

and ∂ϑ(x), vicinity of the point x and its boundary; δ(* ), Dirac delta function of the variable (∗) ; sδs(x), (∗∗) t =

∫ 
D

sδs(x), (∗∗( x))t dx = ∫(
S

∗∗( x)) dS, ∂n sδs(x), (∗∗) t(∗∗∗)  = ∫(
D

∗∗∗( x)) ∂nsδs(x), (∗∗ (x))t dx = ∫ 
S

∂n(∗∗∗( x))(∗∗( x))dS, general-

ized functions of the single and double layers for the surface ∂D = S, i.e., the boundary of the corresponding region D;
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nS, normal to S; (∗∗)  and (∗∗∗) , vector functions prescribed at S and D. Subscripts: st, equilibrium; s, area; w, wall;

f, fluid.
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